Gonadal steroids exert facilitating and "buffering" effects on glucocorticoid-mediated transcriptional regulation of corticotropin-releasing hormone and corticosteroid receptor genes in rat brain.
نویسندگان
چکیده
Gonadal steroids profoundly influence several brain functions and are apparently responsible for gender-specific differences in the regulation of hypothalamic-pituitary-adrenal (HPA) secretions. In this study, we examined the so-called "activational" effects of gonadal steroids on the glucocorticoid-mediated regulation of the gene transcription of corticotropin-releasing hormone (CRH) and corticosteroid receptors in brain areas of relevance for the control of pituitary-adrenal secretion. The efficacy of adrenalectomy (ADX) and chronic treatment with high doses of corticosterone (B) to regulate the gene transcription of CRH and corticosteroid receptors in the hypothalamic paraventricular nucleus (PVN) and hippocampus was studied in male and female rats under the conditions of deprivation of gonadectomy (GDX) and replacement with different gonadal steroids, such as estradiol (E2), progesterone (P), and dihydrotestosterone (DHT). In both sexes, ADX alone or in combination with GDX increased, and B treatment suppressed, the steady-state levels of CRH and corticosteroid receptor mRNAs, whereas GDX alone failed to affect any of the parameters studied. Administration of gonadal hormones to steroid-deprived (ADX/GDX) animals partially attenuated the upregulation of mRNAs encoding corticosteroid receptors in the hippocampus. Supplementation with gonadal steroids modified the effects of B on the gene transcription of CRH and corticosteroid receptors. Whereas P alone or in combination with E2 counteracted the B-induced downregulation of GR and CRH gene transcription in females, DHT and E2 administration further potentiated the effects of B on these parameters in a sex-specific manner. Taken together, the results indicate that gonadal steroids have minor influence on MR, GR, and CRH gene transcription under basal conditions, exert "glucocorticoid-like" effects on the transcription of corticosteroid receptors in the hippocampus of steroid-deprived animals, and interact with glucocorticoid-mediated mechanisms of regulation in the HPA axis through gender-specific "buffering" and "potentiating" effects.
منابع مشابه
Paeoniflorin regulates the hypothalamic-pituitary-adrenal axis negative feedback in a rat model of post-traumatic stress disorder
Objective(s): To investigate the effects of paeoniflorin (PEF) on the hypothalamic-pituitary-adrenal (HPA) axis feedback function of post-traumatic stress disorder (PTSD). cSingle-prolonged stress (SPS) was used to establish a PTSD-like rat model. The contents of plasma corticosterone (CORT), adrenocorticotropin hormone (ACTH) and cortic...
متن کاملLateral Hypothalamus Corticotropin Releasing Hormone Receptor-1 Inhibition Modulates Stress- Induced Anxiety Behavior
Stress is a reaction to unwanted events disturbing body homeostasis which influences its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA) orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH receptor type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and t...
متن کاملEvolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression.
Glucocorticoids (GCs) exert feedback regulation on corticotropin-releasing factor (CRF) neurons in mammals. The nature of GC actions is cell-type specific, being either inhibitory (e.g. paraventricular nucleus) or stimulatory (e.g. amygdala and bed nucleus of the stria terminalis). Nothing is known about differential regulation of CRF gene expression by GCs in nonmammalian vertebrates. We studi...
متن کاملNeonatal Treatment of Rats with the Neuroactive Steroid Tetrahydrodeoxycorticosterone (THDOC) Abolishes the Behavorial and Neuroendocrine Consequences of Adverse Early Life Events
Stressful experience during early brain development has been shown to produce profound alterations in several mechanisms of adaptation, while several signs of behavioral and neuroendocrine impairment resulting from neonatal exposure to stress resemble symptoms of dysregulation associated with major depression. This study demonstrates that when applied concomitantly with the stressful challenge,...
متن کاملNeonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events.
Stressful experience during early brain development has been shown to produce profound alterations in several mechanisms of adaptation, while several signs of behavioral and neuroendocrine impairment resulting from neonatal exposure to stress resemble symptoms of dysregulation associated with major depression. This study demonstrates that when applied concomitantly with the stressful challenge,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 21 شماره
صفحات -
تاریخ انتشار 1996